Why Ketamine?

Jennifer Davis, M.D. Hospice and Palliative Care Center May 13, 2011

Objectives

- Be familiar with the pharmacology, dosing, and administration of Ketamine
- Understand the indications, contraindications, benefits, and side effects of Ketamine
- Know the various uses of Ketamine and its abuse potential

History

- Developed in early 1960s and FDA approved in 1970
- First used in soldiers in Vietnam War for warfare surgical procedures
- Classified as schedule III drug August 1999
- Outlawed in United Kingdom January 2006

History

- According to DEA, 80% seized is from Mexico
- Most commonly used in clubs at raves
- 2002 statistic, almost 3% of 12th grade students admitted to using ketamine in the last year

History

- The Scientist by John Lilly
- Journeys into the Bright World by Marcia Moore and Howard Alltounian
- The Essential Psychedelic Guide by D.M. Turner

Pharmacology

- Dissociative anesthetic and analgesic that binds the phencyclidine (PCP) site
- Noncompetitively blocks the excitatory NMDAglutamate receptor, a calcium channel in the transmission of pain signals via dorsal horn
- NMDA receptor plays a role in opioid tolerance

Pharmacology

 Also interacts with other calcium and sodium channels, dopamine receptors, cholinergic transmission, noradrenergic and serotoninergic reuptake, mu/delta/kappa opioid receptors, monoaminergic and muscarinic receptors, and possibly GABA receptors

= DIRTY DRUG

Pharmacology

- Central sensitization: persistent noxious stimuli lead to progressively higher pain intensity via NMDA receptor hyperexcitation
- Wind up phenomenon: repeated transmission of nociceptive stimuli resulting in summation of the stimuli with co-release of excitatory amino acid and slow lasting potentials leading to hyper-responsive spinal neurons and decreased opioid responsiveness

Allodynia: pain elicited by non-noxious stimuli

- Metabolism: 80% first pass hepatic metabolism
- **Metabolite:** norketamine is 1/3 as potent as parenteral form as anesthetic but equipotent as an analgesic
- **Bioavailability:** ranges from 93% IM to 16% PO
- Excretion: in the urine primarily

Pharmacology

- Onset of action: IV=30sec, IM=3-5min, SC=15-30min, PO=30min
- Duration of action: IV=5-10min, IM=12min-2hr, PO=4-6hr
- Half life: 3 hours
- Steady state: 12-15 min

Pharmacology

- No adjustment needed for renal impairment, and insufficient data for liver impairment
- Binding is less in elderly, so dose reduction would be reasonable
- Avoid in pregnancy and breastfeeding, no data

Pharmacology

- Adverse drug reactions: clonidine, anticholinergics, benzodiazepines, barbiturates, risperidone, opioids, anesthetics, alcohol
- Generic ketamine 50mg/ml in 10ml vial (\$17.70) vs. Ketalar (\$33)
- 100ml of 50mg/5ml solution for IV: 2x10ml ketamine vials (50mg/ml) + 80ml purified water

Indications

- Induction and maintenance anesthesia
- Pain unresponsive to standard treatment
- Failure of opioid rotation
- Severe neuropathic pain
- Opioid tolerance based on rapid escalation
- Bronchospasm in asthma and COPD
- Depression in bipolar disorder
- Minor procedures
- Migraine headaches

Contraindications

- Increased blood pressure
- Increased intracranial pressure
- Acute intermittent porphyria (induces ALA syn)
- Current or history of psychiatric disorder, seizures, glaucoma, heart failure, ischemic heart disease, CVA, severe hepatic impairment, severe neurologic impairment

Pros

- Can be given PO, IV, IM, SL, SC, PR, intranasal, transdermal, topical, and epidural, intrathecal
- Can be applied directly to the skin as an aerosol spray to wounds
- Can be used as an oral rinse for mucositis

Pros

- Opioid sparing effect leads to reduced opioid requirement and opioid associated side effects
- May prevent opioid tolerance and reduce central sensitization and hyperalgesia
- May have anti-inflammatory effects

Pros

- Excellent analgesia with limited respiratory depression
- Patient can remain awake and breathe unassisted but not aware
- Used in ICU for prolonged status epilepticus

Pros

- Recent use in treatment of alcoholism, heroin addiction, and depression
- Rapid onset and minimal side effects at subanesthetic doses
- Small dose ketamine has been shown useful and safe as additive to standard opioid therapy in 54% of studies (A&A 2004)

Cons

- There are not sufficient DBRCT studies showing efficacy as an analgesic, but numerous case reports and small trials
- Concern for withdraw and associated hyperalgesia and allodynia upon sudden cessation
- Significant number of clinical trials 45% demonstrated no benefit to adding ketamine to opioids explained by the nature of the procedure, degree of post-op pain, and method of administration

Cons

- Should require informed consent
- Requires close monitoring
- Irritation to SC site
- Crosses the blood brain barrier
- Bitter taste
- Concern for side effects

Cons

- Studies have shown no benefit when added to opioid PCA after major abdominal surgery
- Ineffective in intrathecal route, peripheral regional use, local anesthesia, intra-articular, nerve block, and would infiltration
- Preemptive and postoperative benefits have been difficult to determine with conflicting results and many different kinds of surgeries

Pain

- Post spinal cord injury chronic pain
- Sickle cell vaso-occlusive pain
- Chronic post surgical pain
- Major surgery with high opioid requirement

Pain

- Pre and post incisional
- Chronic regional pain syndrome I
- Fracture reductions
- Calciphylaxis

Pain

- Incident pain from movement
- Opioid refractory pain
- Neuropathic pain: post-herpetic neuralgia, trigeminal neuralgia, spinal cord injury, phantom limb pain, limb ischemia, fibromyalgia, multiple sclerosis, Guillain-Barre syndrome
- Chronic abdominal pain such as pancreatitis and angina

Pain

- Chronic neck, back, and leg pain
- Migraine headaches
- Cancer related pain in children and adults
- Painful dressing changes such as burns

Trials and Case Series

Mercadante JPSM 2000 (DBRCT):

- On 3 separate days, 2 days apart, 10 patients given slow bolus of either 0.25mg/kg vs. 0.50mg/kg vs. normal saline
- Ketamine, but not saline, significantly reduced pain in almost all patients at both doses

Berger AJHPC 2000 (small trial):

- IV K-F-M 2mg/ml 5ug/ml 0.1mg/ml at rate range of 2-12ml/hr
- All 9 patients showed improvement

Trials and Case Series

Reeves A&A 2001 (DBRCT):

- 71 patients either received morphine 1mg/ml or morphine 1mg/ml + ketamine 1mg/ml via PCA
- Post-op, there was no difference except worse cognitive testing in the MK group

Jackson JPSM 2001 (unblinded trial):

- 39 patients received 3-5 day ketamine infusion at 100mg/24h for 3 days or increased to 300mg/24h for 3 days or increased to 500mg/24h for 3 days
- Overall response rate of 67%

Trials and Case Series

Kannan JPSM 2002 (small trial) :

- 0.5mg/kg three times daily PO as adjuvant
- 7/9 patients showed improvement

Mitchell Pain 2002 (DBRCT):

- 35 patients received either Opioids + ketamine infusion (0.6mg/kg) vs. opioids + placebo over 4 hours
- OK group (16/28) showed statistically significant difference in pain improvement

Trials and Case Series

Fitzgibbon JPM 2005 (retrospective audit):

- Ketamine was effective in 11/16 patients with range of use from 1-120 days
- Starting dose of 40-90mg/24h increased by 50-100mg/24h every 24 hours with stable dose of 50-768mg/24h

Lossignol SCC 2005 (small trial):

- 12 patients received a test dose of 5mg and if tolerated were given starting dose of 1.5mg/kg/24h
- Final doses ranged from 195-1000mg/24h with duration of treatment ranging from 7-350 days
- Pain control remained acceptable in 11/12 patients

Trials and Case Series

Polizzotto JPSM 2006 (case series):

 Calciphylaxis patients received doses ranging from boluses of SC ketamine 50mg for dressing changes and continuous infusions of 300-500mg/24hr

Finkel JP 2007 (small trial):

- 8/11 children on adjuvant ketamine infusion had opioid sparing effects, improvement of pain, and more family interaction
- Doses ranged from 0.1-1mg/kg/hr and duration ranged from 1-75 days

Trials and Case Series

Mercadante CJP 2009 (2 case reports):

- Opioid switching from morphine to methadone and burst ketamine in incident pain
- 2 day infusion of ketamine 100mg/d then stopped, continued on methadone, and D/C

Schwartzman Pain 2009 (DBRCT):

- 19 CRPS patients infused with saline with or without ketamine (50mg/h) 4 hours/day for 5 days on, 2 days off, 5 days on
- Ketamine group had statistically significant reduction in many pain parameters

Trials and Case Series

Zempsky CJP 2010 (retrospective case review):

- 5 children received ketamine infusion for Sickle Cell pain (4 with opioids and 1 in place of)
- 2 patients has significant pain control and 1 patient had significant opioid reduction
- Dose ranged from 0.06-0.2 mg/kg/h and duration ranged from 19-90 hours

Amr Pain Physician 2010 (DBRCT):

- 40 patients randomized to ketamine + gabapentin and placebo + gabapentin
- Ketamine dose 80mg IV over 5hours daily for 7 days
- KG group showed significant improvement over PG group during infusion and 2 weeks after

Trials and Case Series

Irwin JPM 2010 (case series):

- 2 cases of anxiety and depression treated with ketamine
- 0.5mg/kg PO single dose

Dosing

- Initial test dose given to assess tolerability and efficacy
- Some give prophylactic concurrent benzodiazepine or antipsychotic
- Often mixed with other drugs such as opioids
- Opioid dose should be reduced by 25-50% with parenteral ketamine
- Conversion: after few days CSCI=PO, after weeks to months 25-50%CSCI=PO

Dosing

PO:

- 10-25mg TID-QID and prn, increase by 10-25mg increments up to 200mg QID
- Or weight based 0.25-0.5mg/kg TID
- Give smaller more frequent doses if side effects occur
- Direct from vial or diluted mixed in tasty liquid

Dosing

SL:

- 10-25mg, do not swallow for 2 minutes
- Use higher concentrations to minimize volume **SC:**

30.

10-25mg prnIncrease in increments of 25-33%

IV:

- 0.5-1mg/kg
- Give over 1-2 minutes preceded by benzodiazepine

Dosing

CSCI:

- Dilute in large volume to avoid site irritation
- 1-2.5mg/kg/24h
- Increase by 50-100mg/24h, max dose 3.6g/24h
- Some use loading dose 0.5mg/kg over 30 min, followed by continuous 2mg/h
- Some just start with 100mg/24h, "burst"
- Increase to 300mg/24h, then 500mg/24h and stop 3 days after last increment

Dosing

CIVI:

- 50-200microgram/kg/h and titrate
- Single burst 600micrograms/kg up to 6mg/4h
- Increase next dose by 30% if no response
- Repeat daily for up to 5 days
- Various titration techniques reported
- Some start with 0.1mg/kg and double Q15min
- Others start at 10mg/h and titrate up from there

Side Effects

euphoria, dysphasia, blunted affect, psychomotor retardation, vivid dreams, nightmares, impaired attention, memory problems, impaired judgment, illusions, hallucinations, altered body image, delirium, dizziness, diplopia, blurred vision, nystagmus, altered hearing, hypertension, tachycardia, hypersalivation, nausea, vomiting, erythema, pain at injection site, fatigue, increased muscle tone, increased pulmonary artery pressure

Side Effects

slurred speech, confusion, disorientation, hypotension, bradycardia, respiratory depression, apnea, malignant hyperthermia, agitation, coma, seizure, laryngospasm, bronchorrhea, arrhythmia, increased intracranial pressure, morbilliform rash, anorexia, anaphylaxis, out-of-body experience, sedation, euphoria, sense of calm and serenity, increased energy, open and closed eye visuals, meaningful spiritual experiences, ataxia

Side Effects

- For analgesic doses, impaired attention, memory, and judgment
- Occur less with subanesthetic dose given PO or CSCI and seem to be dose related
- Can be controlled with concurrent benzodiazepine or haloperidol

Side Effects

- Can be reduced by slowing dose titration and providing medications for side effects
- Occur more often in the elderly, in women, and patients with anxiety disorders
- Chronic use leads to cognitive impairment

Urinary Side Effects

Urinary Toxicity

- Frequency, urgency, dysuria, hematuria
- Suprapubic pain, "K-pains" and "Ketamine Cramps" usually with greater than 1gm/day
- Interstitial cystitis, detrusor overactivity, decreased bladder capacity
- Vesico-ureteric reflux, hydronephrosis, papillary necrosis, renal impairment, renal failure

Urinary Toxicity

- Urinalysis negative for bacteria or sterile pyuria
- 20-30% of frequent users of high quantities report bladder symptoms
- Appears to be a temporal link where severity of damage is determined by chronicity of abuse

Urinary Toxicity

- Cystoscopy: epithelial inflammation, ulceration, petechial hemorrhage, neovascularization, contact bleeding
- Histology: denuded bladder epithelium, eosinophilic infiltration
- Urography: shrunken bladder, decreased bladder compliance, detrusor overactivity, papillary necrosis, hydronephrosis

Urinary Toxicity

- Withdrawal of ketamine results in some degree of resolution of symptoms depending on severity
- Other treatments: NSAIDs, steroids, anticholinergics, cystodistension, intravesical instillation of hyaluranic acid, oral pentosan polysulfphate, and tyrosine

Nicknames	
К	
Super K	
Vitamin K	
Special K	
Mean green	
Rockmesc	
Ket	
Kitties	
K2	
Jet	
Super acid	
Green	
Cat valium	
KitKat	

Combinations

Strawberry: ketamine + ephedrine + selegiline

Sitting Duck: ketamine + ecstasy

CK1: ketamine + cocaine

Abuse

- Similar to PCP but with less violent, confused behavior when coming off
- Severe impairment of working, episodic, and semantic memory
- Increased schizotypal and dissociative symptoms
- "K hole": at the brink of being fully sedated, out-of-body or near-death experience
- Desired depersonalization and derealization

Abuse

- Mortality is low
- Consequences are related to dangerous behaviors and accidents
- Used as a date rape drug
- Long term adverse effects: flashbacks, attentional dysfunction, memory impairment, tolerance, high dependency potential

Abuse

- Rapid onset and duration means quick recovery
- Only 4% of dose recovered in urine
- Not included in standard urine toxicology screens
- Blood levels: therapeutic use: 0.5-5mg/L, arrest for impairment: 1-2mg/L, fatal overdose: 3-20 mg/L

Abuse

- Powder can be insufflated, injected or oral
- Injection bypasses liver metabolism providing more efficient, smoother high up to 2 hours
- Oral route requires more drug but longer trip without dissociative state
- Onset for injection: 1-5min, snorted: 5-15min, oral: 5-30min

What have we learned?

- A little History and A LOT of Pharmacology
- About Use and Abuse of this mystic drug
- Recent Supportive Evidence in Palliation
- Dosing and Administration and Side Effects
- Who is ready to give some Ketamine ???

References

- Quibell R et al. Therapeutic Reviews: Ketamine: Journal of Pain and Symptom Management 2011; 41 (3): 640-649.
 Yuvin SA et al. Oral Ketamine for the Rapid Treatment of Depression and Anxiety in Patients Receiving Hospice Care. Journal of Palliative Medicine 2010; 13 (7): 903-908.
 Amr YM. Multi-Day Low Dose Ketamine Infusion as Adjuvant to Oral Galapentin in Spinal Cord Injury Related Chronic Pain: A Prospective, Randomized, Double Blind Trial. Pain Physican 2010; 13: 245-249.
 Middels S et al. Ketamine: Induced vesicopathy: a literature review. International Journal of Clinical Practice 2010; 65 (1): 27-30.
- (1): 27-30. Zempsky IVT et al. Use of Low-dose Ketamine Infusion for Pediatric Patients With Sickle Cell Disease-related Pain. Clinical Journal of Pain 2010; 26: 163-167. Bell R et al. Kennine as an adjuvant to opioids for cancer pain (Review). The Cochrane Library 2009; 3. Storr TM et al. Can ketamine presenbed for pain cause damage to the uninary track? Palliative Medicine 2009; 23: 670-672.
- Schwartzman RJ et al. Outpatient intravenous ketamine for the treatment of complex regional pain syndrome: A double-blind placebo controlled study. Pain 2009; 147: 107-115. double-bind placebo controlled study. Pain 2009; 147: 107-115.
 Mercadants S et al. Opoids Switching and Burst Kernime to Improve the Opioid Response in Patients With Movement-related Pain Due to Bone Meastasses. Clinical Journal of Pain 2009; 25: 648-649.
 Grande LA et al. Ultrar. Jour Dose Kerninie and Memanine Treatment for Pain in an Opioid-Tolerant Oncology Patient. Anesth Analg 2008; 107: 1380-3.
- Louis AURSII (2008) 2005, 1071-1309-5. Cambell-Henring M et al. The Use of Ketamine as Adjuvant Therapy to Control Severe Pain. Clinical Journal of Oncology Nursing 2008, 12 (1): 102-107. Obst. Ti. Ketamine: An Introduction for the Pain and Palliative Medicine Physician. Pain Physician 2007; 10: 493-Obst. 7000.
- Finkel J ce al. Ketamine as an Adjuvant to Treatment of Cancer Pain in Children and Adolescents 2007; 8 96): 515-521.
- Polizzotto MN et al. Symptomatic Management of Calciphylaxis: A Case Series and Review of the Literature 2006; 32 (2): 186-190.

References

- Visser E et al. The role of ketamine in pain management. Biomedicine and Pharmacotherapy 2006; 1-8. Lossignol DA et al. Successful use of ketamine for intractable pain. Support Care Cancer 2006; 15: 188-193. Fitzgibbon EJ et al. Parenteral Ketamine as an Andgaeis Adjuvant for Severe Pain: Development and Retrospective Audit of a Protocol for a Palliative Care Unit. Journal of Palliative Medicine 2005; 8 (1): 40-57. Submanniam K et al. Ketamine as Andgaes to Opioids: A Quantitative and Qualitative Systematic Review. Anesh Andg 2004; 9: 462-95. ne-row, runstn rung 2004; 19: 482-05. Statin NJE et al. Keramine in the Treatment of Kafractory Cancer Pain: Case Report, Rationale, and Methodology. Supportive Oncology 2003; 1 (4): 287-293. Mc 2002; 36: 1014–1019.
- 2002, 36: 1614-1619. Mitchell AC et al. Single infusion of intravenous ketamine improves pain relief in patients with ertical limb ischaemair results of a double blind randomised controller trail. Pain 2002; 97: 275-281. Kanara TR et al. Oral Ketamine as an Adjuvant to Oral Morphine for Neuropathis Plain in Cancer Patients. Journal of Pain and Symptom Management 2002; 23 (1): 60-65. Revers M et al. Adding Ketamine to Morphine for Patient-Controlled Analgesia After Major Abdominal Surgery: A Double-Blinded, Randomized Controlled Trial. Anesth Analg 2001; 35: 116-120. Jokeon K: "Burst" Ketamine for References (Cancer Patients: An Open-Label Audit of 59 Patients. Journal of Pain and Symptom Management 2001; 22 (4): 534-842.
- Mercadante S. Analgesie Effect of Intravenous Ketamine in Cancer Patients on Morphine Therapy: A Randomized, Controlled, Double-Blind, Crossover, Double-Dose Study. Journal of Pain and Symptom Management 2000; 20 (4): 246-252.
- 20 (9): 240-222. Berger JM et al. Ketamine-fentanyl-midazolam infusion for the control of symptoms in terminal life care. American Journal of Hospice and Pallative Care 2000; 17 (2): 127-132. More NN. Ketamine Dependence in Anesthesia Providers. Psychosomatics 1999; 40 (4): 356-359. Fine JK1. Low-Dose Ketamine in the Management of Opioid Nonresponsive Terminal Cancer Pain, Journal of Pain and Symptom Management 1999; 17 (4): 226-300.